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Abstract—Nowadays, many organizations pay attention to the 

relevant technologies of Big Data to analyze more accurately, 

quickly, and efficiently. Real-time Big Data analytics is 

challenging due to the massive volume of complex data needed to 

distribute in processing. Therefore, in this research, we 

investigate two state-of-the-art architectures: Lambda and 

Kappa. The Kappa architecture is simply the Lambda 

architecture without the batch layer. To help businesses decide 

on the right architecture, their processing time, and resource 

utilization in the same environment need to be found out. 

Experiments had been carried out with the data size 3 MB, 30 

MB, and 300 MB. The results showed that Lambda architecture 

outperforms Kappa architecture around 9% for the accuracy test 

when using processing time approximately 2.2 times more than 

Kappa architecture. Lambda architecture also used more 10-

20% of CPU usage and 0.5 GB of RAM usage than Kappa 

architecture.  

Keywords-Lambda architecture; Kappa architecture; real-time; 

Big Data  

I.  INTRODUCTION 

Big Data is a data source consisting of 4Vs, Volume, 
Velocity, Variety, and Value [1]. Since Big Data may be in 
unstructured, semi-structured, and structured platforms, it is not 
easy to manage and analyze. Therefore, many organizations 
now pay attention to the related technology of Big Data to help 
them analyze accurately, quickly, and efficiently. Real-time 
Big Data analytics means that big data is processed as it 
arrives. This event is challenging due to the massive volume of 
complex data needed to distribute in processing. How to handle 
significant data accuracy and worth for investment is also 
extremely challenging. Therefore, this article investigates two 
state-of-art real-time Big Data analytic architectures, Lambda 
architecture, and Kappa architecture. Lambda architecture 
consists of three layers: batch layer, speed layer, and serving 
layer, whereas Kappa architecture consists of only two layers: 
streaming layer and serving layer. 

This paper is structured as follows. Section 2 provides 
background work on Lambda and Kappa architectures, Apache 
Hadoop, Spark, and some other relevant technologies. Related 
work is discussed in Section 3. Methodology and 
Implementation on Hadoop clusters are demonstrated in 
Section 4. Then, the results are shown in Section 5, and the 
conclusion will be discussed in the last section. 

II. BACKGROUND WORK 

A. Lambda Architecture 

Lambda architecture, first introduced by Nathan Marz’s 
[2], is a real-time architecture for Big Data. There are three 
layers: batch layer, speed layer, and serving layer, as shown in 
Fig. 1.  The batch layer stores and processes the master dataset 
to generate the batch views. Therefore, this process usually 
takes high latency. To compensate for the latency problem in 
the batch layer, speed layer is a real-time processing layer with 
the latest data to produce real-time views. It updates the views 
when it receives new data instead of recomputing the views as 
the batch layer does. Then, the serving layer combines the 
outcomes of the batch layer and speed layer to provide queries 
on them. 

 

Figure 1.  Lambda Architecture 
 

B. Kappa Architecture 

Jay-Kreps proposed Kappa architecture in 2014 [3]. The 
batch layer is eliminated, remaining only the streaming layer to 
process streaming data. If there is a change of the data in this 
layer, it will always be replaced with the new data. The serving 
layer provides queries for the streaming layer, as shown in Fig. 
2. Kappa architecture stores data in the way of distribution; 
therefore, requirement and analysis can be easily changed [4]. 

 

 

Figure 2.  Kappa Architecture 
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C. Apache Hadoop 

Apache Hadoop is an open source Big Data platform. It can 
be used to store and process massively distributed data [5]. 
Hadoop 1.0 has mainly two parts: Hadoop Distributed File 
System (HDFS) for data storage and MapReduce for data 
processing. The MapReduce divides files into large groups and 
spread across nodes in the cluster. Then the package code will 
be sent as a node to process parallel data. This event can help 
the massive data set to be processed faster and more efficiently. 
However, the MapReduce is still slow and inconvenient to 
implement using the Java programs directly. Therefore, in 
Hadoop 2.0, YARN helps other platforms than MapReduce 
such as Spark or Hive to process data from HDFS more 
efficiently. 

D. Apache Spark 

Apache Spark is an open-source, general purpose, scalable, 
and in-memory computing platform, developed by UC 
Berkeley University in 2009 and donated to the Apache 
Software Foundation in 2010 [6]. There are many available 
different analyses modules, such as Spark SQL, Spark 
Streaming, MLlib, and GraphX. A spark is a powerful tool 
which reduces the processing time by using memory instead of 
HDFS. This tool can dramatically improve the performance on 
a cluster. The nature of the work comes in the Resilient 
Distributed Dataset (RDD) style, which can be divided into 
small data sets distributed within Spark and has similar 
behavior to MapReduce [7]. After the RDD is imported, 
mapped, and transformed, the new value of RDD is sent to 
produce the final result.  

The Spark streaming is part of the Spark API, which can 
process not only massively streaming data but also historical 
data. Besides, it can make streaming applications resistant to 
errors by continuously sending a streaming message known as 
DStreams, as shown in Fig. 3. It can be used in both similar 
components: the speed layer in the Lambda architecture and 
the streaming layer in the Kappa architecture. After an agent 
such as Kafka, RabbitMQ, or ActiveMQ receives massively 
streaming data and distributes that data to the Spark streaming, 
the Spark streaming will process and send the results back to 
the agent. 

 

 

Figure 3.  The work of DStream in Spark Streaming 

E. Apache Kafka 

Apache Kafka is a distributed streaming platform that can 
transfer both asynchronous and synchronous messages. It was 
developed at LinkedIn in 2010 [8]. It can be applied to record 
transaction data, where new data is appended only, not 
overwritten [9]. Besides, Kafka can set the age not to expire 
meaning that the same data can be read over and over again. 
The data in Kafka are stored in the disk space continuously 
acting as files. The advantages of Kafka are that it is fast and 

can be a data store. It also has very low latency on reading and 
writing [10]. 

F. Apache NiFi 

Apache NiFi [11] is a software development project from 
the Apache Software Foundation proposing to help design the 
flow of data between software automatically. It is developed by 
NSA, which the current source name is NiFi coming from 
NiagaraFiles. Its software design is based on the programming 
style according to the work plan of the program developer. 

G. Elasticsearch 

Elasticsearch [12] is an open source, full-text search, and 
analysis engine. It allows searching enormous data almost real-
time with an HTTP web interface and schema-free JSON 
documents. It uses a calculation method called TF-IDF (Term 
Frequency-Inverse Document Frequency), developed by 
Apache Lucene since its launch in 2010. 

H. Kibana 

Kibana [13] is a Web application that displays analytical 
results. It can run the data from Elasticsearch and enable users 
to see an overview of real-time data in the different desired 
report formats. 

III. RELATED WORK 

Lambda architecture has high accuracy and fast command 
processing. However, it has to pay the high cost of long-term 
maintenance for each layer, which is separated. Furthermore, 
the same data have to keep in both layers; batch and speed 
layer. Therefore, when there is a change in the data in one 
layer, the other layer must also change the data as well. 
Whereas Kappa architecture does not include the batch layer in 
the architecture, presumably that many applications do not 
require the massive amount of data. However, there is a 
segmentation of the streaming data and the number of 
resources adjusting the size according to segment size [14]. 

 Both Lambda and Kappa architectures provide great 
flexibility when increasing the size of the data set. However, 
the size of the data set is a factor that affects performance. 
When the size of the data set is more massive than 100M, 
compared with the work time, it is found that Kappa 
architecture used up to +2209% of work time while Lambda 
architecture uses only +1940%. Therefore, increasing the 
amount of imported data, Kappa architecture tends to decrease 
performance higher than the Lambda architecture [15]. 

In the Lambda architecture, if the data has to be processed 
repeatedly, the architecture can retrieve a copy of the data that 
has been treated recently, reproduce that data, and compare it 
with the data obtained from the speed layer. Whereas, in Kappa 
architecture, the data have to be replicated before processing 
every time. However, the need for the Lambda architecture to 
prepare areas must support data generated by rewriting or re-
processing as well. Therefore, the budget for making a space 
for supporting lambda architecture data may have to use twice 
more than the budget of Kappa architecture [16].  
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Based on the above data, it can be seen that there are 
differences in both architectures, as concluded in Table 1. 

TABLE I.  COMPARISON BETWEEN LAMBDA AND KAPPA 

ARCHITECTURE 

 Lambda 

Architecture  

Kappa 

Architecture 

 

Layer 
Batch layer 

Speed layer 
Serving layer 

 

Streaming layer 
Serving layer 

Error 
(In case of sudden 

data changes) 

Low Risk High Risk 

Reliability High Medium 

Change of 

Structure 
Hard Flexible 

Cost High Low 

Resource Usage High Low 

 

IV. IMPLEMENTATION 

Now we need to prove the concept of both architectures. 
Implementation of Lambda architecture and Kappa architecture 
will be demonstrated in section A and B, respectively. We use 
Ubuntu 16.04 as an operating system with the machine of 8 
core CPU, RAM 30 GB, Hard disk 250 GB for a cluster of one 
master node, and two worker nodes. 

A. Lambda Architectural Design 

Lambda architecture separates the layer of processing, as 
described in Section 2. The process of analytics begins with 
Apache NiFi ingest streaming data to Apache Kafka. Then 
Kafka distributes the data to both batch layer (1) and speed 
layer (2). The flume in the batch layer sends that data to persist 
in HDFS and analyze by using MapReduce. The batch views 
are the results of this layer. Spark streaming in the speed layer 
receives the input directly from the Kafka and processes that 
data before representing in the speed views. The serving layer 
(3) merges the batch and speed views and put them to 
Elasticsearch for comparing and indexing via Kibana, as shown 
in Fig. 4. 
 

 

Figure 4.  Proposed Lambda Architecture 

B. Kappa Architectural Design 

Kappa architecture focuses only on the streaming data, so it 
gets rid of the batch layer as described in Section 2. After 

Apache NiFi ingests streaming data to Apache Kafka, Kafka 
distributes that data to Spark streaming to analyze in the 
streaming layer (1). Then the real-time views are presented and 
sent to persist in Elasticsearch indexed through Kibana in the 
serving layer (2), as shown in Fig. 5. 

 

Figure 5.  Proposed Kappa Architecture 

C. Design of Transmission Control 

A processor named GetFile is used to control the amount of 
transmission data from Apache NiFi. Then, the data are split 
using the SplitText processor and send data through the 
PublishKafka processor to Apache Kafka, as shown in Fig. 6. 

 

 

Figure 6.  Design of Transmission Control 
 

 

When the data is distributed from Kafka, Apache Flume 
helps to spread data to the batch layer. The data is stored in 
HDFS and processed Word Count using Hadoop MapReduce. 
While in the speed layer, that data is processed to do Word 
Count using Spark streaming, as shown in Fig. 7 and 8. 

 

 

Figure 7.  Processing Design in Lambda Architecture 

 (1)   

 (2)   

 (3)   

(1)  (2)   
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Figure 8.  Processing Design in Kappa Architecture 

V. RESULTS 

This section is part of the experimental results obtained 
from data transmission testing and performance measurement, 
as shown below: 

A. Accuracy Test 

A data (one file) with a size of 3 MB containing 566,849 

words was input into both architectures.  Then, ten times and 

one hundred times of the message, which are 30 MB and 300 

MB size of data containing 5,668,490 words and 56,684,900 

words were also input to investigate more results. The data 

were sent into the architectures by compressing with one byte 

per one second. The results of the word countability and the 

percentage of accuracy of both architectures are shown in 

Table 1 and 2, respectively. 

TABLE I. WORD COUNT AND ACCURACY, SORTED BY DATA SIZE 

Data 

Size 
Layer 

Lambda Architecture Kappa Architecture 

Word Count 

 

Accuracy 

(%) 

Word Count 

 

Accuracy 

(%) 

3 MB 

Batch 566,503 99.9389 - 
 

Speed / 

Streaming 
514,916 90.8383 514,916 90.8383 

30 

MB 

Batch 5,664,840 99.9356 - - 

Speed / 
Streaming 

5,149,070 90.8367 5,149,070 90.8367 

300 
MB 

Batch 54,382,464 95.9382 - - 

Speed / 
Streaming 

49,431,072 87.2032 49,431,072 87.2032 

 

B. Data Processing Time 

From Table 3, it is found that Lambda architecture uses 

the data processing time approximately 2.2 times more than 

that of Kappa architecture when the data size is 30 MB and 

300 MB. 

TABLE II. THE DATA PROCESSING TIME, SORTED BY DATA SIZE 

Data 

Size 
Layer 

Data Processing Time (minute) 

Lambda Architecture Kappa Architecture 

3 MB 

Batch 0.31 - 

Speed / 

Streaming 
0.08 0.06 

30 MB 

Batch 1.53  

Speed/ 
Streaming 

1.24 1.22 

300 MB 

Batch 27.55 - 

Speed / 
Streaming 

23.59 23.05 

 

C. CPU Usage in Data Transmission 

When testing CPU usage for sending 3 MB of data into the 

architectures, the results showed that the Lambda architecture 

(average 50.85%) had a higher CPU utilization rate than that 

of the Kappa architecture (average 39.95%) approximately 

10.90% as shown all details in Figure 9. 

 

 

Figure 9.  CPU Usage of Sending 3 MB of Data 

When testing CPU usage for sending 30 MB of data into 

the architectures, the results showed that the Lambda 

architecture (average 68.50%) had a higher CPU utilization 

rate than that of the Kappa architecture (average 53.62%) 

approximately 14.88% as shown all details in Figure 10. 

 

 

Figure 10.  CPU Usage of Sending 30 MB of Data 

When testing CPU usage for sending 300 MB of data 

which is one hundred times of the original size into the 

architectures, the results showed that the Lambda architecture 

(average 71.55%) had a higher CPU utilization rate than that 

of the Kappa architecture (average 54.61%) approximately 

16.94% as shown all details in Figure 11. 

 

 

Figure 11.  CPU Usage of Sending 300 MB of Data 

D. RAM Usage in Data Transmission 

When measuring the RAM usage of sending data size 3 

MB, the results showed that the Lambda architecture has 

RAM usage at the average 15.72 GB, which is 52.40% of the 

available RAM. Whereas, the Kappa architecture has RAM 
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usage at the average 15.23 GB, which is 50.78% of the 

available RAM as shown all details in Figure 12. 

 

 

Figure 12.  RAM Usage of Sending Data Size 3 MB  

When measuring the RAM usage of sending data size 30 

MB, the results showed that the Lambda architecture has 

RAM usage at the average 15.48 GB which is 51.59% of the 

available RAM. Whereas, the Kappa architecture has RAM 

usage at the average 15.22 GB which is 50.74% of the 

available RAM as shown all details in Figure 13. 

 

 

Figure 13.  RAM Usage of Sending Data Size 30 MB  

When measuring the RAM usage of sending data size 

300 MB, the results showed that the Lambda architecture had 

RAM usage at the average 16.13 GB which is 53.75% of the 

available RAM. Whereas, the Kappa architecture has an 

average at 15.38 GB which is 51.25% of the available RAM as 

shown all details in Figure 14. 
 

 

 

Figure 14.  RAM Usage of Sending Data Size 300 MB  

VI. DISCUSSION AND CONCLUSION 

In this research, we investigated two state-of-the-art 

architectures: Lambda and Kappa. Experiments had been 

carried out with the data size 3 MB, 30 MB, and 300 MB. 

Based on the results of the experiments, it can be seen that the 

Lambda architecture outperforms Kappa architecture around 

9% for the accuracy test when using processing time 

approximately 2.2 times more than Kappa architecture. 

Lambda architecture also used more 10-20% of CPU usage 

and 0.5 GB of RAM usage than Kappa architecture. Since 

Kappa architecture does not store any data, the processes may 

have some errors during data transmission or file subdivision. 

Therefore, it is suitable for tasks which do not require much 

precision but need quick results. Whereas, Lambda 

architecture, which requires complicated installation and high 

budget of maintenance, is suitable for organizations needing 

high accuracy jobs. 

The next step toward more challenging is to subdivide 

data size before sending into both architectures. Moreover, the 

experiments should be more focus on the impacts that may 

occur at the time of data transmission or data processing to 

provide for the next real-time Big Data analytics architecture.  
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