
A Comparative Performance of Real-time Big Data

Analytic Architectures

Apisit Sanla

Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

Bangkok, Thailand

apisit.sa@kmitl.ac.th

Thanisa Numnonda

Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

Bangkok, Thailand

thanisa@it.kmitl.ac.th

Abstract—Nowadays, many organizations pay attention to the

relevant technologies of Big Data to analyze more accurately,

quickly, and efficiently. Real-time Big Data analytics is

challenging due to the massive volume of complex data needed to

distribute in processing. Therefore, in this research, we

investigate two state-of-the-art architectures: Lambda and

Kappa. The Kappa architecture is simply the Lambda

architecture without the batch layer. To help businesses decide

on the right architecture, their processing time, and resource

utilization in the same environment need to be found out.

Experiments had been carried out with the data size 3 MB, 30

MB, and 300 MB. The results showed that Lambda architecture

outperforms Kappa architecture around 9% for the accuracy test

when using processing time approximately 2.2 times more than

Kappa architecture. Lambda architecture also used more 10-

20% of CPU usage and 0.5 GB of RAM usage than Kappa

architecture.

Keywords-Lambda architecture; Kappa architecture; real-time;

Big Data

I. INTRODUCTION

Big Data is a data source consisting of 4Vs, Volume,
Velocity, Variety, and Value [1]. Since Big Data may be in
unstructured, semi-structured, and structured platforms, it is not
easy to manage and analyze. Therefore, many organizations
now pay attention to the related technology of Big Data to help
them analyze accurately, quickly, and efficiently. Real-time
Big Data analytics means that big data is processed as it
arrives. This event is challenging due to the massive volume of
complex data needed to distribute in processing. How to handle
significant data accuracy and worth for investment is also
extremely challenging. Therefore, this article investigates two
state-of-art real-time Big Data analytic architectures, Lambda
architecture, and Kappa architecture. Lambda architecture
consists of three layers: batch layer, speed layer, and serving
layer, whereas Kappa architecture consists of only two layers:
streaming layer and serving layer.

This paper is structured as follows. Section 2 provides
background work on Lambda and Kappa architectures, Apache
Hadoop, Spark, and some other relevant technologies. Related
work is discussed in Section 3. Methodology and
Implementation on Hadoop clusters are demonstrated in
Section 4. Then, the results are shown in Section 5, and the
conclusion will be discussed in the last section.

II. BACKGROUND WORK

A. Lambda Architecture

Lambda architecture, first introduced by Nathan Marz’s
[2], is a real-time architecture for Big Data. There are three
layers: batch layer, speed layer, and serving layer, as shown in
Fig. 1. The batch layer stores and processes the master dataset
to generate the batch views. Therefore, this process usually
takes high latency. To compensate for the latency problem in
the batch layer, speed layer is a real-time processing layer with
the latest data to produce real-time views. It updates the views
when it receives new data instead of recomputing the views as
the batch layer does. Then, the serving layer combines the
outcomes of the batch layer and speed layer to provide queries
on them.

Figure 1. Lambda Architecture

B. Kappa Architecture

Jay-Kreps proposed Kappa architecture in 2014 [3]. The
batch layer is eliminated, remaining only the streaming layer to
process streaming data. If there is a change of the data in this
layer, it will always be replaced with the new data. The serving
layer provides queries for the streaming layer, as shown in Fig.
2. Kappa architecture stores data in the way of distribution;
therefore, requirement and analysis can be easily changed [4].

Figure 2. Kappa Architecture

978-1-7281-1190-2/19/$31.00©2019 IEEE

674

C. Apache Hadoop

Apache Hadoop is an open source Big Data platform. It can
be used to store and process massively distributed data [5].
Hadoop 1.0 has mainly two parts: Hadoop Distributed File
System (HDFS) for data storage and MapReduce for data
processing. The MapReduce divides files into large groups and
spread across nodes in the cluster. Then the package code will
be sent as a node to process parallel data. This event can help
the massive data set to be processed faster and more efficiently.
However, the MapReduce is still slow and inconvenient to
implement using the Java programs directly. Therefore, in
Hadoop 2.0, YARN helps other platforms than MapReduce
such as Spark or Hive to process data from HDFS more
efficiently.

D. Apache Spark

Apache Spark is an open-source, general purpose, scalable,
and in-memory computing platform, developed by UC
Berkeley University in 2009 and donated to the Apache
Software Foundation in 2010 [6]. There are many available
different analyses modules, such as Spark SQL, Spark
Streaming, MLlib, and GraphX. A spark is a powerful tool
which reduces the processing time by using memory instead of
HDFS. This tool can dramatically improve the performance on
a cluster. The nature of the work comes in the Resilient
Distributed Dataset (RDD) style, which can be divided into
small data sets distributed within Spark and has similar
behavior to MapReduce [7]. After the RDD is imported,
mapped, and transformed, the new value of RDD is sent to
produce the final result.

The Spark streaming is part of the Spark API, which can
process not only massively streaming data but also historical
data. Besides, it can make streaming applications resistant to
errors by continuously sending a streaming message known as
DStreams, as shown in Fig. 3. It can be used in both similar
components: the speed layer in the Lambda architecture and
the streaming layer in the Kappa architecture. After an agent
such as Kafka, RabbitMQ, or ActiveMQ receives massively
streaming data and distributes that data to the Spark streaming,
the Spark streaming will process and send the results back to
the agent.

Figure 3. The work of DStream in Spark Streaming

E. Apache Kafka

Apache Kafka is a distributed streaming platform that can
transfer both asynchronous and synchronous messages. It was
developed at LinkedIn in 2010 [8]. It can be applied to record
transaction data, where new data is appended only, not
overwritten [9]. Besides, Kafka can set the age not to expire
meaning that the same data can be read over and over again.
The data in Kafka are stored in the disk space continuously
acting as files. The advantages of Kafka are that it is fast and

can be a data store. It also has very low latency on reading and
writing [10].

F. Apache NiFi

Apache NiFi [11] is a software development project from
the Apache Software Foundation proposing to help design the
flow of data between software automatically. It is developed by
NSA, which the current source name is NiFi coming from
NiagaraFiles. Its software design is based on the programming
style according to the work plan of the program developer.

G. Elasticsearch

Elasticsearch [12] is an open source, full-text search, and
analysis engine. It allows searching enormous data almost real-
time with an HTTP web interface and schema-free JSON
documents. It uses a calculation method called TF-IDF (Term
Frequency-Inverse Document Frequency), developed by
Apache Lucene since its launch in 2010.

H. Kibana

Kibana [13] is a Web application that displays analytical
results. It can run the data from Elasticsearch and enable users
to see an overview of real-time data in the different desired
report formats.

III. RELATED WORK

Lambda architecture has high accuracy and fast command
processing. However, it has to pay the high cost of long-term
maintenance for each layer, which is separated. Furthermore,
the same data have to keep in both layers; batch and speed
layer. Therefore, when there is a change in the data in one
layer, the other layer must also change the data as well.
Whereas Kappa architecture does not include the batch layer in
the architecture, presumably that many applications do not
require the massive amount of data. However, there is a
segmentation of the streaming data and the number of
resources adjusting the size according to segment size [14].

 Both Lambda and Kappa architectures provide great
flexibility when increasing the size of the data set. However,
the size of the data set is a factor that affects performance.
When the size of the data set is more massive than 100M,
compared with the work time, it is found that Kappa
architecture used up to +2209% of work time while Lambda
architecture uses only +1940%. Therefore, increasing the
amount of imported data, Kappa architecture tends to decrease
performance higher than the Lambda architecture [15].

In the Lambda architecture, if the data has to be processed
repeatedly, the architecture can retrieve a copy of the data that
has been treated recently, reproduce that data, and compare it
with the data obtained from the speed layer. Whereas, in Kappa
architecture, the data have to be replicated before processing
every time. However, the need for the Lambda architecture to
prepare areas must support data generated by rewriting or re-
processing as well. Therefore, the budget for making a space
for supporting lambda architecture data may have to use twice
more than the budget of Kappa architecture [16].

675

Based on the above data, it can be seen that there are
differences in both architectures, as concluded in Table 1.

TABLE I. COMPARISON BETWEEN LAMBDA AND KAPPA

ARCHITECTURE

 Lambda

Architecture

Kappa

Architecture

Layer
Batch layer

Speed layer
Serving layer

Streaming layer
Serving layer

Error
(In case of sudden

data changes)

Low Risk High Risk

Reliability High Medium

Change of

Structure
Hard Flexible

Cost High Low

Resource Usage High Low

IV. IMPLEMENTATION

Now we need to prove the concept of both architectures.
Implementation of Lambda architecture and Kappa architecture
will be demonstrated in section A and B, respectively. We use
Ubuntu 16.04 as an operating system with the machine of 8
core CPU, RAM 30 GB, Hard disk 250 GB for a cluster of one
master node, and two worker nodes.

A. Lambda Architectural Design

Lambda architecture separates the layer of processing, as
described in Section 2. The process of analytics begins with
Apache NiFi ingest streaming data to Apache Kafka. Then
Kafka distributes the data to both batch layer (1) and speed
layer (2). The flume in the batch layer sends that data to persist
in HDFS and analyze by using MapReduce. The batch views
are the results of this layer. Spark streaming in the speed layer
receives the input directly from the Kafka and processes that
data before representing in the speed views. The serving layer
(3) merges the batch and speed views and put them to
Elasticsearch for comparing and indexing via Kibana, as shown
in Fig. 4.

Figure 4. Proposed Lambda Architecture

B. Kappa Architectural Design

Kappa architecture focuses only on the streaming data, so it
gets rid of the batch layer as described in Section 2. After

Apache NiFi ingests streaming data to Apache Kafka, Kafka
distributes that data to Spark streaming to analyze in the
streaming layer (1). Then the real-time views are presented and
sent to persist in Elasticsearch indexed through Kibana in the
serving layer (2), as shown in Fig. 5.

Figure 5. Proposed Kappa Architecture

C. Design of Transmission Control

A processor named GetFile is used to control the amount of
transmission data from Apache NiFi. Then, the data are split
using the SplitText processor and send data through the
PublishKafka processor to Apache Kafka, as shown in Fig. 6.

Figure 6. Design of Transmission Control

When the data is distributed from Kafka, Apache Flume
helps to spread data to the batch layer. The data is stored in
HDFS and processed Word Count using Hadoop MapReduce.
While in the speed layer, that data is processed to do Word
Count using Spark streaming, as shown in Fig. 7 and 8.

Figure 7. Processing Design in Lambda Architecture

 (1)

 (2)

 (3)

(1) (2)

676

Figure 8. Processing Design in Kappa Architecture

V. RESULTS

This section is part of the experimental results obtained
from data transmission testing and performance measurement,
as shown below:

A. Accuracy Test

A data (one file) with a size of 3 MB containing 566,849

words was input into both architectures. Then, ten times and

one hundred times of the message, which are 30 MB and 300

MB size of data containing 5,668,490 words and 56,684,900

words were also input to investigate more results. The data

were sent into the architectures by compressing with one byte

per one second. The results of the word countability and the

percentage of accuracy of both architectures are shown in

Table 1 and 2, respectively.

TABLE I. WORD COUNT AND ACCURACY, SORTED BY DATA SIZE

Data

Size
Layer

Lambda Architecture Kappa Architecture

Word Count

Accuracy

(%)

Word Count

Accuracy

(%)

3 MB

Batch 566,503 99.9389 -

Speed /

Streaming
514,916 90.8383 514,916 90.8383

30

MB

Batch 5,664,840 99.9356 - -

Speed /
Streaming

5,149,070 90.8367 5,149,070 90.8367

300
MB

Batch 54,382,464 95.9382 - -

Speed /
Streaming

49,431,072 87.2032 49,431,072 87.2032

B. Data Processing Time

From Table 3, it is found that Lambda architecture uses

the data processing time approximately 2.2 times more than

that of Kappa architecture when the data size is 30 MB and

300 MB.

TABLE II. THE DATA PROCESSING TIME, SORTED BY DATA SIZE

Data

Size
Layer

Data Processing Time (minute)

Lambda Architecture Kappa Architecture

3 MB

Batch 0.31 -

Speed /

Streaming
0.08 0.06

30 MB

Batch 1.53

Speed/
Streaming

1.24 1.22

300 MB

Batch 27.55 -

Speed /
Streaming

23.59 23.05

C. CPU Usage in Data Transmission

When testing CPU usage for sending 3 MB of data into the

architectures, the results showed that the Lambda architecture

(average 50.85%) had a higher CPU utilization rate than that

of the Kappa architecture (average 39.95%) approximately

10.90% as shown all details in Figure 9.

Figure 9. CPU Usage of Sending 3 MB of Data

When testing CPU usage for sending 30 MB of data into

the architectures, the results showed that the Lambda

architecture (average 68.50%) had a higher CPU utilization

rate than that of the Kappa architecture (average 53.62%)

approximately 14.88% as shown all details in Figure 10.

Figure 10. CPU Usage of Sending 30 MB of Data

When testing CPU usage for sending 300 MB of data

which is one hundred times of the original size into the

architectures, the results showed that the Lambda architecture

(average 71.55%) had a higher CPU utilization rate than that

of the Kappa architecture (average 54.61%) approximately

16.94% as shown all details in Figure 11.

Figure 11. CPU Usage of Sending 300 MB of Data

D. RAM Usage in Data Transmission

When measuring the RAM usage of sending data size 3

MB, the results showed that the Lambda architecture has

RAM usage at the average 15.72 GB, which is 52.40% of the

available RAM. Whereas, the Kappa architecture has RAM

677

usage at the average 15.23 GB, which is 50.78% of the

available RAM as shown all details in Figure 12.

Figure 12. RAM Usage of Sending Data Size 3 MB

When measuring the RAM usage of sending data size 30

MB, the results showed that the Lambda architecture has

RAM usage at the average 15.48 GB which is 51.59% of the

available RAM. Whereas, the Kappa architecture has RAM

usage at the average 15.22 GB which is 50.74% of the

available RAM as shown all details in Figure 13.

Figure 13. RAM Usage of Sending Data Size 30 MB

When measuring the RAM usage of sending data size

300 MB, the results showed that the Lambda architecture had

RAM usage at the average 16.13 GB which is 53.75% of the

available RAM. Whereas, the Kappa architecture has an

average at 15.38 GB which is 51.25% of the available RAM as

shown all details in Figure 14.

Figure 14. RAM Usage of Sending Data Size 300 MB

VI. DISCUSSION AND CONCLUSION

In this research, we investigated two state-of-the-art

architectures: Lambda and Kappa. Experiments had been

carried out with the data size 3 MB, 30 MB, and 300 MB.

Based on the results of the experiments, it can be seen that the

Lambda architecture outperforms Kappa architecture around

9% for the accuracy test when using processing time

approximately 2.2 times more than Kappa architecture.

Lambda architecture also used more 10-20% of CPU usage

and 0.5 GB of RAM usage than Kappa architecture. Since

Kappa architecture does not store any data, the processes may

have some errors during data transmission or file subdivision.

Therefore, it is suitable for tasks which do not require much

precision but need quick results. Whereas, Lambda

architecture, which requires complicated installation and high

budget of maintenance, is suitable for organizations needing

high accuracy jobs.

The next step toward more challenging is to subdivide

data size before sending into both architectures. Moreover, the

experiments should be more focus on the impacts that may

occur at the time of data transmission or data processing to

provide for the next real-time Big Data analytics architecture.

REFERENCES

[1] M. Hilbert, "Big Data for Development: A Review of Promises and
Challenges," vol. 34, pp. 135-174, 2016.

[2] Lambda Architecture. Available: http://lambda-architecture.net

[3] kappa-architecture.com. Available: http://milinda.pathirage.org/kappa-
architecture.com

[4] K. Pawar and V. Attar, "A survey on Data Analytic Platforms for
Internet of Things," in 2016 International Conference on Computing,
Analytics and Security Trends (CAST), 2016, pp. 605-610.

[5] Apache Hadoop. Available: https://hadoop.apache.org

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
"Spark: cluster computing with working sets," presented at the
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, Boston, MA, 2010.

[7] K. Hong. SPARK PROGRAMMING MODEL : RESILIENT
DISTRIBUTED DATASET (RDD). Available:
https://www.bogotobogo.com/Hadoop/BigData_hadoop_Apache_Spark
_Programming_Model_RDD.php

[8] Apache Kafka ® is a distributed streaming platform. What exactly does
that mean. Available: https://kafka.apache.org/intro

[9] T. Van-Dai, L. Chuan-Ming, and G. W. Nkabinde, "Big data stream
computing in healthcare real-time analytics," in 2016 IEEE International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA),
2016, pp. 37-42.

[10] B. Lawlor, R. Lynch, M. Mac Aogáin, and P. Walsh, "Field of genes:
using Apache Kafka as a bioinformatic data repository," GigaScience,
vol. 7, p. giy036, 2018.

[11] Apache NiFi. Available: https://nifi.apache.org

[12] Elasticsearch. Available: https://www.elastic.co/products/elasticsearch

[13] Kibana. Available: https://www.elastic.co/products/kibana

[14] M. Feick, N. Kleer, and M. Kohn, "Fundamentals of Real-Time Data
Processing Architectures Lambda and Kappa."

[15] V. Persico, A. Pescapé, A. Picariello, and G. Sperlí, "Benchmarking big
data architectures for social networks data processing using public cloud
platforms," Future Generation Computer Systems, vol. 89, pp. 98-109,
December 2018.

[16] J. Kreps, (2014). Questioning the Lambda Architecture. Available:
https://www.oreilly.com/ideas/questioning-the-lambda-architect

678

